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Condensation ofHEDM (4 mole %) 

optimum 02 

per 100 moles H2 

Jr  430 

-    420 
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HEDM Heat ofFormation (kcal/100 moles H2) 

Figure 1. Specific impulse ofHEDM containing 4 mole percent equivalent atom density in sohd hydrogen with 
various stages of condensation. Numbers inside circles denote the optimum moles of 02 per 100 moles of H2 that 
produces the maximum Isp for the indicated compositions. The calculations are based on the standard rocket 
operating conditions, 1000 psi combustion pressure and 1 atm nozzle exit pressure, wh.ch produce ,89 sec with 
liquid oxyoen/liquid hydrogen propellant. The propellant composed of 4 mole percent C-atoms produces maximum 
Isp with no oxygen. If the atoms condense to 1 mole percent C4, the Isp drops to the baseline 389 sec value. 
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Objective - 5% atoms in cryogenic matrix 

Approach 

1. FTIR spectroscopy of BjCn.j clusters isolated in 10 K argon matrix 

2. Ab-initio calculations of cluster 
(a) normal mode frequencies and frequency shifts of their isotopomers 
(b) infrared absorption intensities (km mol"1) 

3. Measurement of cluster distributions produced upon deposition and after 
annealing): Absolute column densities (molecules cm"2) from Beer's Law 

AeXp 
<Pil>=-—-N 
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matrix (b): 12C/13C = 50/50 

experiment 
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Comparison of C4/C6, C7/C9, C10/C12 Ratios 
Obtained for Different Experimental Conditions 

As Deposited 
1st Annealing 
2nd Annealing 
3rd Annealing 
4th Annealing 
5 th Annealing 
6th Annealing 

More Atoms Fewer Atoms 

The ratio of the equivalent carbon atom column density for n+1 species 
(n as in Cn) to the equivalent carbon atom column density for n+3 species 
indicates how many atoms were available for formation of species like C4, 
C7, and C10. When the Ta cell was hotter more n+1 species were formed 
during deposition than when the cell was colder.  During annealings 
there were only minimal changes in the relative order of the ratios for 
C4/C6; C7/C9; C10/C12. Similar results are noted for C(n+2)/C(n+3). 

The run with 5% H2/95% Ar yields a lower C(n+l)/C(n+3) ratio than 
would be expected. The hydrogen may be scavenging atoms. 
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Cumulative Sum of Equivalent Carbon Atom Density 
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(a) B/C   = 1/3 

"BIWB = 80/20 
12C/'3C = 99/1 

955.0 11-12-12-11 

s c ra 
a 
g    (d) B/C   =1/3 
tn 

990 980 960 
wavenumbere 

HG. 3. FT1R spectra of the »5<T„> mode of isotopomers of linear BCCB. The spectra were recorded after pealing the matrices with the indicated 
compositions at 27.5 K for 150 s. The large open triangles at the bottom show the predicted frequences of hnear BCCB isotopomers (as explained in the text) ^positions 
and small filled triangles show measured isotopomer frequencies, 

TABLE IV. Experimental B2C: isotopomer frequency patterns. Frequencies and frequency intervals {cm   ) in 

triplet bands of B;C2 isotopomers. 

Boron isotope triple« Carbon isotope triplets 

l:req. 

Intervals 

Isotopomer Freq. 

Intervals 

Isotopomer Short Long Short Long 

'% |:C2 979.0 
11.3 

'% l!C2 979.0 
8.8 

l0"B2
l2C2 967.7 

12.7 
24.0 10B,a"C2 970.2 

(7.9)" 
(16.7)' 

"B, "C2 955.0 'V!C2 (962.3)' 

'°B2 
l2-,3C2 970.2 

(11.5)" 

lO.llg   12^ 967.7 
(9.0)" 

lO.tlri    I2.13Q (958.7)' 
(12.9)' 

24.4 10.1 ID   1U)Q (958.7)* 
(8.1)' 

17.1 

"Bj al3C2 945.8 »•MB,"C, 950.6 

">B2
I3C2 (962.3)" 

(11.7)' 
"B2

I2C2 955.0 
9.2 

l0-"B2
,JC2 950.6 

13.1 
(24.8)' "B2 

,!,3C2 945.8 
8.3 

17.5 

"B2
,3C2 937.5 »B2"C2 937.5 

"Frequencies and intervals in parentheses were interpolated or extrapolated from measured quantities. 
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Conclusions 

Linear C3, cyclic BC2, and cyclic B2C, constituted about 80% of the total observable boron and 
carbon in the initially deposited matrix, but B3 was not observed. 

The measured trimer distribution in the initially formed matrices was 
p(C3): P(BQ): p(B2C): p(B3) ~ 1 : 1.5 : 0.5 : < 0.05. 

Statistical substitution of J boron atoms into an n-atom carbon cluster produces a distribution given 
by p{BjC„.j)/ p(C„) =[{n{n-l)...(n-J+l)}IJl\ [B/C]y. With the experimental B/C ~ 1/3, the statistical 

trimer distribution is 
p(C3): p(BC2): p(B2C): p(B3) -1:1: 0.33 : 0.03. 

Agreement between distributions implies trimers form by random condensation of well-mixed atoms, 
uninfluenced by the relative energies of the trimers, the energies of their precursors, or preferential 
kinetics pathways that could otherwise distort the statistics. 

Linear C3 and cyclic BC2, disappeared entirely when the matrices were repeatedly annealed to 
temperatures between 25 K and 35 K, but cyclic B2C was inert. 

Linear C4 and BC3 (BCCC) disappeared more slowly, and linear B2C2 (BCCB) grew to ~ 95% of its 
final value during the first annealing. B2C2 was also inert, as B2C. 

The sources of B2C2 are from condensation of atom plus trimer (B + BC2 but not C + B2C) or dimer + 
dimer (BC + BC but not B2 + C2). Although BC was not observed, the upper limit of p(BC) is larger 
than p(B2C2) so that BC cannot be ruled out as a source of B2C2. 

The growth of B2C2 is conclusive evidence of the presence of BC and/or B in the originally deposited 
matrix in an amount at least as great as the growth of B2C2. 

Linear C5, BC4 (BCCCC) and B2C3 (BCCCB)] and larger linear clusters (BjCn.,„ 5<n<ll,J = 0, 1, 
2), all grew upon annealing. 

The sources of B2C3 are dimer + trimer (BC + BC2 but not B2 + C3) and atom + tetramer (B + BC3 

but not C + B2C2). 

Since p(BC2) ~ 5p(BC3) in the initially deposited matrix, the BC + BC2 source is dominant. Growth 
of B2C3 conclusively establishes the presence of BC in the matrix in an amount at least as great as the 
amount by which B2C3 grows. 

Growth of BC4 occurs primarily by BC + C3 rather than B + C4 or C + BC3 because p(C3) ~ 10p(C4) 
and p(C3) ~ 2p(BC3). Growth of Cs occurs by C + C4 and C2 + C3, which establishes the presence of 
C and/or C2 in the original matrix in an amount at least as great as C5 growth. 

Disappearance of triangular BC2 requires breaking of one of its B-C bonds when one of its carbon 
atoms is attacked. The major reorganization of electronic energy involved in opening the ring 
appears to occur with little (< ~3 kcal mol"') or no energy barrier, which makes this small molecule a 
candidate for an interesting ab-initio study of unusual reactivity at low temperature. r^fr 
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Conclusions 

1. C3 is linear but BC2, B2C and B3 are cyclic. 

2. n > 3; J = 0,1, 2 clusters are linear. Boron atoms cap the ends of linear chains. 

3. J = 0,1, 2 substitution in n > 5 clusters does not significantly affect IR intensities. 

4. For n > 5 the absorption intensity of even n clusters is two to three times smaller than that 
of odd n clusters. 

5. B2C2 grew most dramatically upon annealing. BC was not detected. Its upper limit column 
density is comparable to that of n = 4 clusters. B2C2 sources may be 2BC or B + BC2 but C + 
B2C does not form B2C2. 

6. n = 3,4; J = 0,1 clusters disappear upon annealing but J = 2 clusters either grow or remain 
unchanged. Capping the ends of clusters with boron seems to render them inert to further 
condensation. 

7. Statistical cluster distributions are apparent in n = 4 and 5 dusters. B2C yields are too high 
and B2C„.2 yields are too low in larger n > 6 clusters. 

8. n > 5 clusters grow upon annealing and larger clusters grow more than smaller clusters. 

Conclusions from Carbon HEDM Research 

Quantitative analysis - Establishes HEDM density, distribution of carbon clusters, heat of formation of 
HEDM. Enables tracking of growth and decay of carbon clusters - carbon bookkeeping - quantification of 
"invisible carbon", C-atom and C2. 

Highest density matrix (equivalent C-atom density ~ 1 mole percent in argon) contained 40% "invisible" 
carbon (C, CO, determined by tracking the growth of the "visible" (measurable) carbon to a constant 
composition after repeated annealing. Main product of condensation is cyclic C«. 

Yields of cyclic-Cr, are a factor of two larger than the combined yield of all other clusters in the fully 
condensed, highest density matrices. Cyclic-G; is the dominant condensation product. 

Knudsen oven produces ~ 80% C3 and ~ 10% each of C2 and C-atom (by mass). 
Laval oven with AT ~ 600 K (between graphite surface and orifice) produces ~ 5% C3 and C2 and ~ 90% C- 
atom. C-atoms production by our oven (relative to C3) is enhanced by higher temperature, which is 
accompanied by higher AT. 

Substrate must be shielded from oven to prevent condensation during deposition. 
Higher temperature oven places higher heat load on substrate, which promotes condensation. 

Obtained higher density matrices by decreasing argon flux and maintaining oven flux. However, 
condensation was also increased. 

One experiment with argon/5% H2 caused nearly complete loss of Cn+, and C„+2 relative to C„+3, suggesting 
that H2 scavenges C-atoms efficiently during co-deposition. 


